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Abstract: 4D-QSAR analysis incorporates conformational and alignment freedom into the development of 3D-
QSAR models for training sets of structure-activity data by performing ensemble averaging, the fourth “dimension”.
The descriptors in 4D-QSAR analysis are the grid cell (spatial) occupancy measures of the atoms composing each
molecule in the training set realized from the sampling of conformation and alignment spaces. Grid cell occupancy
descriptors can be generated for any atom type, group, and/or model pharmacophore. A single “active” conformation
can be postulated for each compound in the training set and combined with the optimal alignment for use in other
molecular design applications including other 3D-QSAR methods. The influence of the conformational entropy of
each compound on its activity can be estimated. Serial use of partial least-squares, PLS, regression and a genetic
algorithm, GA, is used to perform data reduction and identify the manifold of top 3D-QSAR models for a training
set. The unique manifold of 3D-QSAR models is arrived at by computing the extent of orthogonality in the residuals
of error among the most significant 3D-QSAR models in the general GA population. Receptor independent (RI)
4D-QSAR analysis has been successfully applied to three training sets: (a) benzylpyrimidine inhibitors of dihydrofolate
reductase, (b) prostaglandin PGF2R antinidatory analogs, and, (c) dipyridodiazepinone inhibitors of HIV-1 reverse
transcriptase (RT). Two general findings from these applications are that grid cell occupancy descriptors associated
with the “constant” chemical structure of an analog series can be significant in the 3D-QSAR models and that there
is an enormous data reduction in constructing 3D-QSAR models. The resultant 3D-QSAR models can be graphically
represented by plotting the significant 3D-QSAR grid cells in space along with their descriptor attributes.

Introduction

Three-dimensional quantitative structure-activity relation-
ship, 3D-QSAR, analysis is a major applications methodology
in computer-assisted molecular design, CAMD. As part of the
name implies (activity), the 3D-QSAR approach is most often
used in pharmaceutical applications. However, the methodology
is readily applicable to many chemical design problems and,
within this general context, is referred to as three-dimensional
quantitative structure-property relationship, 3D-QSPR, analysis.
Several schemes to doing 3D-QSAR analysis have been

developed and are discussed in recent reviews.1-3 Probably the
most popular, and one of the first 3D-QSAR schemes, is
comparative molecular field analysis, CoMFA.4 The 4D-QSAR
formalism described in this paper incorporates some CoMFA
features including the spatial grid used to generate a basis set
of QSAR descriptors. However, irrespective of the 3D-QSAR

scheme, this CAMD methodology is receptor-independent. The
data available in a 3D-QSAR analysis are a training set of
compounds, usually analogs, and their measured biological
activities in a common screen/assay. The geometry of the
receptor isnotavailable, and we will term this study areceptor-
independent(RI) 3D-QSAR analysis. In contrast,structure-
based designis a CAMD methodology for problems where the
geometry of the receptor (usually an enzyme)is available along
with corresponding ligand structure-activity data. When
structure-based design is done to develop a quantitative model
to forecast activity, we will term the approachreceptor-
dependent(RD) 3D-QSAR analysis. The 4D-QSAR scheme
can be applied to both (RI) and (RD) problems. The receptor-
independent formalism is presented and applied here.
(RI) 3D-QSAR analysis has three inherent problems to

overcome. First is the identification of theactiVeconformations/
molecular shapes of flexible compounds in the training set. In
the most straightforward interpretation, particularly forin Vitro
activity, the active conformation/shape of a ligand corresponds
to the receptor-bound conformation/shape. Our working defini-
tion of active conformation/shape is that it is the one which
optimizes the quantitative 3D-QSAR model. The second
problem to be overcome is the specification of the basis for
comparing molecules in constructing a 3D-QSAR which is
referred to as themolecular alignment.5 Finally, each molecule
in the training set must be partitioned with respect to intermo-
lecular (receptor) interactions. That is, different parts of each
molecule can be expected to have different types of interactions
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with sites on a common receptor and/or in a common medium.
This partitioned form of the molecule is called theinteraction
pharmacophore. The 4D-QSAR formalism has been developed
to deal with each of these problems in constructing a 3D-QSAR
model.
The fourth dimension of 4D-QSAR analysis is the “di-

mension” of ensemble sampling.The purpose of this paper
is to describe the (RI) 4D-QSAR formalism and to demonstrate
its utility in a series of applications. Throughout the paper4D-
QSARis used when discussing the joint RI and RD formalism,
and (RI) 4D-QSARis used when specifically referring to the
receptor-independent version.

Methods

The ten steps involved in the current (RI) 4D-QSAR
formalism are given in Table 1.Step 1is analogous to initiating
a CoMFA 3D-QSAR analysis in that a reference grid cell space
and a 3D structure for each compound in the training set are
specified. The grid cell size is viewed in 4D-QSAR analysis
as amethodology parameter, and the quantitative 3D-QSAR
model can be optimized as a function of the methodology
parameters. The set of methodology parameters in (RI) 4D-
QSAR analysis are described in Table 2. CoMFA uses the input
3D structures as the (assumed) active conformations/shapes. In
4D-QSAR analysis each 3D structure is the initial starting point
in a conformational ensemble sampling of the molecule. In
principle, any 3D structure is acceptable to initiate the ensemble
sampling. In practice, particularly for analog training sets, a

common, low-energy (not necessarily an energy minimum)
conformation, with respect to common torsion angles across
the training set, should be selected. This provides a “reference
point” over the course of the 4D-QSAR analysis. As an
example, trimethoprim, one of the analogs in the dihydrofolate
reductase, DHFR, inhibitor applications study is shown in its
initial conformation in grid cell space in Figure 1.
TheSecond Stepin (RI) 4D-QSAR analysis is the selection

of the trial set of interaction pharmacophore elements, IPEs.
The current default set of IPEs is listed in Table 3. In essence,
the atoms of a molecule are partitioned into five classes: polar,
nonpolar, hydrogen bond donor, hydrogen bond acceptor, and
no differentiation-all atom occupancy. The last entry in Table
3, “user defined”, provides an open-ended opportunity to test
any, and all, IPEs. These user defined IPEs can range from
modest subcharacterization, such as dividing polar atoms into
specific types, to defining specific sets of atoms and/or molecular
fragments.
TheThird Step in the (RI) 4D-QSAR formalism, performing

a conformational ensemble sampling of each compound in the
training set, addresses the active conformation issue. The
objective of this step is to Boltzmann sample the complete set
of conformations available to each molecule. This objective is
difficult to realize. If systematic conformational search is used,
the number of conformations to explore may be too large for
practical applications or the search done at a sampling resolution
that leaves out crucial conformational states. Moreover, the data
from a systematic search has to be rescaled, based upon
conformational energetics, to a Boltzmann distribution. How-
ever, simulation sampling, in contrast to systematic sampling,
has the problem of being open-ended. It is problematic to know
when the simulation is large enough to accommodate all
necessary states. A variety of approaches to conformational
sampling have been proposed and are described and/or refer-
enced in ref 6. In the (RI) 4D-QSAR application studies
reported here, multilength and/or multitemperature molecular

Table 1. The Ten Operational Steps in Performing a (RI)
4D-QSAR Analysis

step no. description of the step operation

1. Generate the reference grid and initial 3D models for all
compounds in the training set.

2. Select the trial set of interaction pharmacophores
elements, IPEs.

3. Perform a conformational ensemble sampling of each
compound to generate its conformational ensemble
profile, CEP.

4. Select a trial alignment.
5. Place each conformation of each compound in the

reference grid cell space according to the alignment
and record the grid cell occupancy profile, GCOP, for
each IPE and choice in occupancy measure. The
resulting composite set of grid cell
properties constitute the set of grid cell occupancy
descriptors, GCODs.

6. Perform a PLS data reduction of the entire set of GCODs
against the biological activity measures.

7. Use the most highly weighted PLS GCODs and any other
user-selected descriptors for the initial descriptor basis
set in a GA analysis.

8. Return to Step 4 and repeat Steps 4-7 unless all trial
alignments have been included in the analysis.

9. Select the optimum set of 3D-QSAR models with respect
to alignment and any of the methodology parameters.

10. Adopt the lowest-energy conformer state from the set
sampled for each compound, which predicts the
maximum activity using the optimum 3D-QSAR
model as the “active” conformation (shape).

Table 2. Methodology Parameters of 4D-QSAR Analysis

parameter description symbol

grid cell size [only cubic cells are allowed] s
temperature of the molecular dynamics simulation, MDS T
reference molecule R
size of ensemble sampling (no. of distinct initial
starting conformations in the sampling)

Es(I)

no. of alignments Na

no. of descriptors in the GA initial basis set Nd

Figure 1. Trimethoprim, compound1 of Table 4, shown in its initial
CEP conformation, in 2 Å grid cell space.

Table 3. Interaction Pharmacophore Elements, IPEs, of (RI)
4D-QSAR Analysis

IPE description symbol

all atoms of the molecule IPE(a)
polar atoms of the molecule IPE(p)
nonpolar atoms of the molecule IPE(n)
hydrogen bond doners IPE(hbd)
hydrogen bond acceptors IPE(hba)
user defined IPE types IPE(x)
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dynamics simulation, MDS, was used to generate the confor-
mational ensemble profiles, CEPs. To reiterate, the reason this
3D-QSAR scheme is titled4D-QSAR analysis is because
ensemble sampling is considered a QSAR dimension. The
current criteria for sampling convergence of the CEP are as
follows: (1) The Boltzmann distribution becomes independent
of the sampling size. (2) Different starting states lead to the
same distribution. (3) Different sampling schemes produce the
same optimized 3D-QSAR models. (4) For each sampling
scheme theaVeragerate of change of conformational energy
with simulation time is effectively zero.
While these criteria are reasonable, they can be misleading

in that the MDS can become trapped in a local minimum energy
region of conformational space and appear to have converged.
Ultimately, it is the predictive reliability of the quantitative 3D-
QSAR model generated in the (RI) 4D-QSAR analysis which
supports the scheme to construct the CEPs and, for that matter,
the other components of the (RI) 4D-QSAR analysis.
MDSs have been done using the MOLSIM package7 with an

extended MM2 force field.8 Partial atomic charges were
computed using semiempirical molecular orbital methods. The
specific partial charge calculation method is reported with the
results of each application. The temperature, time, and CEP
sampling schedule of the MDSs for each application is also
given with the results.
Selection of the trial alignments isStep 4in a (RI) 4D-QSAR

analysis. To be clear, 4D-QSAR analysis does not “solve” the
alignment problem. Rather, the 4D-QSAR scheme permits a
rapid evaluation of individual trial alignments. Consequently,
the alignment problem can be treated as a search and sample
operation analogous to conformational profiling. The ability
to rapidly evaluate alignments in the (RI) 4D-QSAR algorithm
is due to the complete decoupling of conformational analysis
from alignment analysis and rapid descriptor estimation for each
alignment. Only a single set of CEPs, one for each compound
in the training set, is needed to evaluate an arbitrarily large
number of alignments in terms of the significance of each
corresponding 3D-QSAR model. Each alignment produces a
unique grid cell occupancy distribution for a given CEP of a
compound.
The current (RI) 4D-QSAR algorithm only considers unre-

stricted three-atom match alignment rules. However, there is
no restriction in the algorithm to prevent the inclusion of any
alignment rule. The rapid evaluation of any alignment rule is
a necessary constraint for the practical application of the (RI)
4D-QSAR algorithm.
Each conformation from the CEP of each compound is placed

in the reference grid cell space according to the trial alignment
under consideration as part ofStep 5. The grid cell occupancy
profiles for each of the chosen IPEs are then computed and used
as the basis set of trial 3D-QSAR descriptors. Three types of
grid cell occupancy measures are considered for each IPE. The
absolute occupancy, A0, of grid cell (i, j, k), wherei, j, andk
define thexyz-coordinate location in Cartesian space of the cell,
at time t in the MDS ensemble sampling for the IPE atoms of
compoundc is defined as

τ is the time-length of the MDS ensemble sampling for∆t time
steps, andOt(c, i, j, k) ) 0 if all IPE atoms ofc are not in cell
(i, j, k) at t, andOt(c, i, j, k) ) m if m IPE atoms ofc are in cell
(i, j, k) at t. The “in”/“not in” a grid cell corresponds to the
geometric center of the test atom residing anywhere within the
grid cell. N is the number of sampling steps, (τ/∆t).
Joint occupancy,J0, of grid cell (i, j, k) for c with some

reference compound,R, is defined as

Finally, self-occupancy,S0, of grid cell (i, j, k) by c relative to
R is given by

Each of the occupancy measures can be “normalized” by
dividing the sampling values byN. There are no obvious “rules”
to apply in deciding which occupancy descriptors should be
used in a particular study. The use of a reference compound,
R, biases the 3D-QSAR model toward the template properties
of R. This biasing can be useful when the training set is small.
R can be selected to be a highly active member of the training
set so that the resultant 3D-QSAR model is most highly
influenced by high activity features. Conversely, if the training
set is large, there is probably no reason to introduce any bias
into the analysis, and the use of absolute occupancy descriptors
is the preferred choice.
Step 6 is the data reduction step identical to that done in

CoMFA. 4D-QSAR analysis, like CoMFA, generates an
enormous number of trial QSAR descriptors because of the large
number of grid cells and because of the IPEs and their three
possible corresponding grid cell occupancy representations.
Unlike CoMFA, however, the 4D-QSAR scheme intrinsically
defines the complete set of grid cells to include in an analysis.
The composite set of grid cells occupied at least once in
constructing the CEP for the all atom IPE of each member of
the training set defines the complete set of grid cells. CoMFA
uses a distance cutoff in the evaluation of field potential to limit
the set of descriptor grid cells.
A plot of an IPE CEP can be viewed as a Boltzmann average

spatial distribution of molecular shape with respect to the IPE.
Figure 2 is a difference plot of the all atom IPE CEPs, using
A0, eq 1, as a function of grid cell location for a rigid and
inactive DHFR inhibitor subtracted from trimethoprim, com-
pound1 of Table 4, a potent DHFR inhibitor. In this plot grid
cell location (i, j, k) is mapped into a single index,m*. The
plot in Figure 2 is referred to as a differencemolecular shape
spectrum, MSS, with respect to the all atom IPE. The working
hypothesis in the 4D-QSAR formalism is that the observed
difference in DHFR inhibition potency between the two
compounds is related to the difference in their MSS. Data
reduction is the tool used to facilitate the identification of this
relationship, that is, the 3D-QSAR model. The MSS may be
dependent on grid cell size and the absolute coordinate
positioning of the compound. This possible dependence can
be quickly evaluated by trying different positions and/or grid
cell sizes.

(6) Huber, T.; Torda, A. E.; van Gunsteren, W. F.Biopolymers1996,
39, 103.

(7) Doherty, D.MOLSIM, Molecular Dynamics Simulation Software,
User Guide, V.2.1; The Chem21 Group, Inc., 1780 Wilson Drive, Lake
Forest, IL 60045, 1994.

(8) (a) Allinger, N. L.; Yuh, Y. H.Operating Instructions for MM2 and
MMP2 Program - 1977; Force Field Quantum Chemistry Program
Exchange, Chemistry Dept., Indiana University, Bloomington, IN, 1980.
(b) Hopfinger, A. J.; Pearlstein, R. A.J. Comput. Chem. 1984, 5, 486.

A0(c, i, j, k, N) ) ∑
t)0

τ

Ot(c, i, j, k) (1)

J0(c, R, i, j, k, N) ) ∑
t)0

τ

Ot(c, i, j, k) ∩ Ot(R, i, j, k) (2)

S0(c, R, i, j, k, N) ) ∑
t)0

τ

[Ot(c, i, j, k) -

{Ot(c, i, j, k) ∩ Ot(R, i, j, k)}] (3)
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Partial least squares, PLS, regression9 is used to perform the
data reduction fit between the observed biological activities and
the corresponding grid cell occupancy descriptor, GCOD, values.
The resulting PLS regression fit is the quantitative 3D-QSAR
model. The PLS weightings for the grid cell descriptors could
be used, as done in CoMFA, to construct a graphical representa-
tion of the 3D-QSAR model. However, a general finding from
the application of (RI) 4D-QSAR analysis (seeResults) is that
only a relatively small number of grid cell descriptors (<15
from many thousands) are significant in the quantitative 3D-
QSAR model. Consequently, (RI) 4D-QSAR analysis offers
the opportunity of providing an economical 3D-QSAR equation,
in terms of the number of descriptors, reminiscent of those
developed in classic 2D-QSAR studies.10 These compact 3D-
QSAR models are straightforward to explore and thereby
provide substantial insight into the structure-activity informa-
tion inherent to the training set.
The compact 3D-QSARmodels are actually generated inStep

7 as part of model building, optimization, comparison, and
evaluation using a genetic algorithm, GA.11 Currently, two GAs
are being used in (RI) 4D-QSAR analysis: thegenetic function
approximation, GFA, developed by Rogers12,13and the GA of
the 3D-QSAR method developed by Walters called GERM.14

TheM most highly weighted PLS descriptors are used to form
the trial basis set for the GA analysis. Currently,M ) 200,
and only linear terms are used in multiple linear regression,
MLR, fits in the GA optimization. Other descriptors, not
derived from 4D-QSAR analysis, can be added into the trial
basis set at the start of this step by the user.
Several diagnostic measures to analyze the resultant 3D-

QSAR models are determined as part of the GA optimization.
The diagnostic measures include descriptor usage as a function
of crossover operation, linear cross-correlation among descrip-
tors and/or biological activity measures, number of significant
models, and measures of model significance including correla-
tion coefficient,R, leave-one-out cross-validation correlation
coefficient,xV-R, and Friedman’s Lack of Fit, LOF.12,13

Steps 5-7 are performed for a fixed alignment.Step 8is a
decision/selection operation to consider additional trial align-
ments in model construction or to proceed with an evaluation
of the composite set of 3D-QSAR models generated by the
repetitive application of steps 4-7. Presently, step 8 is carried
out directly by the investigator, and treatment of alignment is
by sampling and not by an optimization scheme.
Once a desired set of trial alignments has been included in

the 3D-QSAR model construction portion of the algorithm, the
inspection and evaluation of the entire population of models is
made. This isStep 9. The principal objective of step 9 is to
identify the “best” 3D-QSAR with respect to alignment.
However, this objective can be generalized to permit exploration
and optimization of the 3D-QSAR with respect to not only
alignment but also conformational sampling, IPE, and the
methodology parameters listed in Table 2. Moreover, while a
“best” 3D-QSAR model can be identified using one or more
measures of significance of fit, added information comes from
comparing a family of best models. In essence, the best and
distinct set of 3D-QSAR models from GA analysis are used in
composite to build a manifold 3D-QSAR model. One approach
to identifying the set of distinct models from a GA analysis is
given as part of the HIV-1 RT inhibition application.
The final step,Step 10, is to hypothesize the“acti Ve”

conformationof each compound in the training set. This is
achieved by first identifying all conformer states sampled for
each compound, one at a time, that are within∆E of the global
minimum energy conformation of the CEP. Currently,∆E is
being set at 2 kcal/mole. The resulting set of low-energy
conformations are individually evaluated in the best 3D-QSAR
equation by assigning grid cell occupancy to be zero or the
maximum possible occupancy value consistent with the en-
semble sampling scheme, depending on conformation and
alignment. In essence, a CEP atT ) O K, starting with the
trial conformation, which will be the only MD conformation
sampled atT ) O K, is generated, and the corresponding grid
cell occupancy descriptors are used to evaluate activity for the
best 3D-QSAR model. The single conformation within∆E,
which predicts the highest activity, is selected as the active
conformation of the compound. The postulated active confor-
mations can be used as structure design templates, including
their deployment as the molecular geometries in a corresponding
CoMFA analysis. The preferred alignment found in the (RI)
4D-QSAR analysis can also be used in the corresponding
CoMFA study.

Results

(RI) 4D-QSAR analysis has been applied to three training
sets. The first training set to be discussed is a series of
substituted 2,4-diamino-5-benzylpyrimidine inhibitors ofE. coli

(9) Glen, W. G.; Dunn, III, W. J.; Scott, D. R.Tetrahedron Comput.
Methods1989, 2, 349.

(10) Hansch, C.; Leo, A.Exploring QSAR Fundamentals and Applica-
tions in Chemistry and Biology; American Chemical Society: Washington,
DC, 1995.

(11) Holland, J.Adaptation in Artificial and Natural Systems; University
of Michigan Press: Ann Arbor, MI, 1975.

(12) Rogers, D.The Proceedings of the Fourth International Conference
on Genetic Algorithms; San Diego, CA, 1991.

(13) Rogers, D.; Hopfinger, A. J.J. Chem. Inf. Computer Sci.1994, 34,
854.

(14) Walters, D. E.; Hinds, R. M.J. Med. Chem.1994, 37, 2527.

Figure 2. The IPE(a) difference molecular shape spectrum, MSS (grid
cell occupancy as a function of grid cell number,m*), for trimethoprim,
an active DHFR inhibitor shown at the top of the plot, minus an inactive
DHFR inhibitor shown in the bottom of the plot.
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dihydrofolate reductase, DHFR.15 The principal reason for
selecting this application is that the bound inhibitor-enzyme
crystal complex geometry is available for one active inhibitor
in the training set. Thus, a comparison of the 3D-QSAR model
constructed from (RI) 4D-QSAR analysis, to the geometry of
the inhibitor-enzyme complex, permits an assessment of the
accuracy and information-content of the 3D-QSAR model.
The second applications study involves a set of prostaglandin

PGF2R analogs tested for the antinidatory effect in hamster16

and rat.17 These compounds are highly flexible and, conse-
quently, explore how well (RI) 4D-QSAR analysis handles
conformational freedom and alignment variability. Since anin
ViVo biological measure is used in the training set, this
application also explores the utility of (RI) 4D-QSAR analysis
for in ViVo modeling applications.
The final application study reported here is for a training set

of 2-substituted dipyridodiazepione inhibitors of both wild-type
and mutant cysteine-181 HIV-1 reverse transcriptase (RT)
enzymes.18,19 The primary objective in choosing this training
set is to determine if (RI) 4D-QSAR analysis can produce 3D-

QSAR models which meaningfully differentiate between wild-
type and cysteine-181 RT activities for a common set of analog
inhibitors.
(RI) 4D-QSAR analysis has not been applied to the steroid

data set used in the first reported CoMFA study4 and has become
something of a comparative “standard” in evaluating other 3D-
QSAR approaches.3 The steroid data set minimizes complica-
tions due to conformation and alignment. 4D-QSAR has been
designed to handle conformation and alignment. Thus, the
steroid data set offers little opportunity to evaluate the novel
features and capabilities of 4D-QSAR analysis.
1. Dihydrofolate Reductase Inhibitors. The training set

of 20 substituted 2,4-diamino-5-benzylpyrimidine inhibitors of
E. coliDHFR considered in the (RI) 4D-QSAR application study
are given in Table 4. The observed I50 values are also listed as
log(1/I50). The second column in Table 4 labeled “compd”
refers to a parent set of pyrimidine inhibitors that has been
compiled over the last few years and is being constantly
updated.15 The 20 compounds in Table 4 are relatively diverse
given the large number of sites of substitution7 and the inclusion
of two sets of isomer pairs [numbers 3, 4 and 6, 7]. Overall,
some of these compounds have proven to be outliers in other
QSAR studies in our laboratory. Thus, one “extra” goal of this
study has been to see if (RI) 4D-QSAR can successfully model
these compounds when other attempts have failed.
The (RI) 4D-QSAR analysis of the inhibitors given in Table

4 is summarized in Table 5. Part a of Table 5 lists the
methodology parameters. Only four trial alignments,Na, defined
in Figure 3, were considered because these four alignments
sample each alignment class: (1) the pyrimidine ring, (2) the
“center” of the molecule including the methylene bridge between
rings, (3) the benzyl ring, and (4) a combination of the
pyrimidine ring, “center”, and benzyl ring. The most active

(15) Duraiswami, C.General Treatments of Conformation and Align-
ments in QuantitatiVe Structure-ActiVity Relationships; Ph.D. Thesis, Dept.
Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago:
Chicago, IL, 1996.

(16) Fletcher, D. G.; Gibson, K. H.; Moss, H. R.; Sheldon, D. R.; Walker,
E. R. H.Prostaglandins1976, 12, 493.

(17) Hayashi, M.; Arai, Y.; Wakatsuka, H.; Kawamura, M.; Konishi,
Y.; Tsuda, T.; Matsumoto, K.J. Med. Chem.1980, 23, 525.

(18) Cardozo, M. G., data supplied prior to submission for publication,
1996.

(19) Proudfoort, J. R.; Hargrave, K. D.; Kapadia, S. R.; Patel, U. R.;
Grozinger, K.G.; McNeil, D. W.; Cullen, E.; Cardozo, M.; Tong, L.; Kelly,
T. A.; Rose, J.; David, E.; Mauldin, S. C.; Fuchs, V. U; Vitous, J.;
Hoermann, M.; Klunder, J. M.; Raghavan, P.; Skiles, J. W.; Mui, P.;
Richman, D. D.; Sullivan, J. L.; Shih, C.-K.; Grob, P. M.; Adams, J.J.
Med. Chem.1995, 38, 4830.

Table 4. The Training Set of Substituted 2,4-Diamino-5-benzylpyrimidine Inhibitors ofE. coli DHFR and Their Corresponding Observed
log(1/I50) Inhibition Measuresa

no. compd R1 R2 R3 R4 R5 R6 R7 log(1/150)

1 1 -OCH3 -OCH3 -OCH3 -H -H -H H 8.23
2 15 -OCH3 -OCH3 -OCH3 -CH2- -H -H H 5.85
3 17R -OCH3 -OCH3 -OCH3 -H -OH -CH3 H 4.00
4 17S
5 22 -OCH3 -OCH3 -OCH3 H dCH2 H 5.60
6 24R -OCH3 -OCH3 -OCH3 H H -CH3 H 5.35
7 24S
8 40 -OCH3 -Br -OCH3 -H -H -H H 8.53
9 55 -OCH3 -OH -OCH3 -H -H -H H 7.96
10 56 -OCH3 -OH -OCH3 H H H -CH3 6.52
11 57 -OCH3 -OCH3 -OCH3 H H H -CH3 7.00
12 59 -OH -H -OH H H H H 2.78
13 62 -H -H -H H H H H 5.71
14 68 -CH2OH -H -CH3OH -H -H -H H 5.83
15 81 -H -H Cl H H H H 6.14
16 84 -H -Br -H H H H H 6.30
17 92 -OCH3 -H -H -H -H -H H 6.40
18 102 -OCH3 -H -OCH3 -H -H -H H 7.75
19 118 -CH3 -H -CH3 H H H H 7.45
20 137 H -C6H5 -H -H -H -H H 6.40

aCompound no. 1 (R1 ) R2 ) R3 ) -OCH3) and (R4 ) R5 ) R6 ) R7 ) H) is trimethoprim.
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analog in the training set, no. 1 of Table 4, trimethoprim, was
used as the reference compound,R, to construct theJ0 IPE(a)
andS0 IPE(a) grid cell descriptor sets, see part b of Table 5.
No other IPEs were considered in the analysis. Five thousand
conformations,Es, were sampled for each of five (I) different
starting conformations,Es(I), for each compound and led to
virtually the same set of top-rated 3D-QSAR models for each
starting conformation. The starting conformations were the five
lowest minimum-energy conformations found in the free-space,
intramolecular conformational analysis of trimethoprim.20 Five
nongrid cell occupancy descriptors (non-GCODs) found to be
of possible importance in an earlier 3D-QSAR study20were used
in addition to the 200 most highly weighted PLS GCODs to
form the GFA analysis initial basis set,Nd ) 205.
The most significant 3D-QSAR model, evaluated by (xV-R2),

is quite dependent upon choice of alignment. The (xV-R2) for
the best 3D-QSAR models found for each of the four test
alignments are given in brackets in Figure 3. Alignment 2 (over

the “center” of the molecule) is preferred, with alignment 3
ranking a marginal second best. Alignment 2 was adopted as
the preferred manner of comparing analogs, and the results
presented below are based upon using alignment 2 in Figure 3.
The optimal 3D-QSAR model found in the 4D-QSAR

analysis is

Figure 4 is a plot of variable (descriptor) usage as a function
of GFA crossover operation. In essence, Figure 4 portrays the
relative significance of the GCODs in the optimum (RI) 4D-
QSAR models. It is noteworthy that none of the non-GCODs
(that is, descriptors not derived by the 4D-QSAR method) found
important in an earlier study20 survived as significant descriptors
in any of the top ten 3D-QSAR models derived by (RI) 4D-
QSAR analysis. The characteristic features of the top ten 3D-
QSAR models from the combined PLS-GFA model building
scheme used in (RI) 4D-QSAR analysis are given in part c of
Table 5. The top ten models, in composite, include eight unique
grid cells out of 1736 grid cells which were occupied. Of the
eight grid cells, five are used in at least six of the top ten models.
The “information loss”, as measured by the decrease in both
theR2 andxV-R2 values of eq 4, as compared to the complete
PLS model, is given by∆R2 and∆(xV-R2) in part c of Table 5.
Both∆R2 and∆(xV-R2) are small. Such a small “information
loss” suggests that eq 4 captures the very large majority of
information that can be extracted from the training set.
Figure 5a shows the GCODs of eq 4 in space. Two of the

grid cells, GC1 and GC2, correspond to sites in the vicinity of
the 4 and 5 substituents on the benzyl ring. One grid cell, GC4,
is near the benzyl side of the methylene spacer, and the other
grid cell, GC3, is near the 2-NH2 group of the pyrimidine ring.
This appears to be the first QSAR model for benzylpyrimidine
inhibitors in which the “constant” portion of the inhibitor in
the analog series, the 2,4-diaminopyrimidine unit, has a QSAR
descriptor associated with it. (RI) 4D-QSAR analysis identifies
a change in the all atom IPE population of GC3, as a function

(20) Dunn, W. J., III; Hopfinger, A. J.; Catana, C.; Duraiswami, C.J.
Med. Chem.1996, 39, 4825.

Table 5. Description of the (RI) 4D-QSAR Analysis of the
Training Set of DHFR Inhibitors of Table 4 and a Summary of the
Best 3D-QSARs Found in the Study

(a)

methodology
parameter,
see Table 2 value

methodology
parameter,
see Table 2 value

(XL, YL, ZL) s (20 Å, 20 Å, 20 Å) 1 Å Es(I) 25 000 (5)
T 300 K Na 4, see Figure 3
R no. 1 of Table 4 Nd 205

(b) Interaction Pharmacophore Elements, IPEs

J0 IPE(a)
S0 IPE(a)

(c) Summary of Top Ten (RI) 4D-QSAR Models (3D-QSARs)
Using Alignment 2 of Figure 3

range inR2 and (xV-R2) in the top ten GFA models 0.901-0.957
(0.790-0.885)

no. of unique outliers in all top ten GFA models 3
no. of unique grid cells in all top ten GFA models 8
no. of significant PLS components 3
no. of significant GFA descriptors in each of
the top models

4

∆R2 and∆(xV-R2) for top GFA model 0.027 (0.034)
no. of non-GCODs in all of the top ten
GFA models

0

Figure 3. The four (Na) alignment rules used in the DHFR inhibitor
4D-QSAR analysis. The numbers (1, 2, 3) define the alignment atoms.
Each number in brackets is thexV-R2 of the best 3D-QSAR found for
the alignment.

Figure 4. A plot of GCOD usage as a function of crossover operation
number in the GFA analysis. The plateau curve associated with the
usage of GCI (I ) 1-4) indicates the evolutionary optimization has
converged and GC1 to GC4 are the most often used independent
variables in the best 3D-QSAR models.

log(1/I50) ) 0.0205GC1(J0) - 0.0324GC2(J0) +
0.1662GC3(J0) + 0.1794GC4(J0) + 5.85

N) 20 R2 ) 0.957 xV-R2 ) 0.885 F ) 83.1
SD) 0.34 (4)
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of substituent modification elsewhere on the molecule under
alignment 2 of Figure 3, as a significant GCOD. This change
in grid cell occupancy for GC3 mainly involves the 2-NH2. The
positive regression coefficients for GC1, GC3, and GC4 in eq
4 indicate activity should increase with increasing ligand atom
occupancy, while the opposite is true for GC2. This particular
3D-QSAR model can be rationalized by placing the model
shown in Figure 5a into the active site ofE. coliDHFR in the
bound alignment, shown in schematic form in Figure 5b. GC1
corresponds to a hydrophobic region “between” Ile 94 and Ile
50, GC2 may be indicative of steric interactions with Ile50, and
GC4 seems to be a hydrophobic space in the vicinity of Ala 7.
GC3 presumably reflects favorable hydrogen bonding between
the 2-NH2 and the Asp-27 carboxyl group and, hence, its
positive regression coefficient in eq 4. Overall, GC1 through
GC4 reflect the extent of receptor probing realized by the 20
analogs of Table 4.
The active conformation of each analog was predicted using

a∆E ) 2 kcal/mole cutoff and eq 4. Figure 6 is a conforma-
tional energy plot of torsion angles “1” and “2” for trimethoprim
as reported by Kuyper.21 The locations of the bound conforma-

tions of trimethoprim to bothE. coli and chicken DHFR
enzymes are indicated. Also plotted in Figure 6 are the

(21) Kuyper, L. F. Inhibitors of Dihydrofolate Reductase. InComputer-
Aided Drug Design; Perun, J. T., Propst, C. L., Eds.; Marcel Dekker: New
York, 1989; p 327.

Figure 6. The conformational energy profile of trimethoprim relative
to torsion angles 1 and 2 with the enzyme bound conformations toE.
coli and chicken DHFR defined. The energy contours are in kcal/mol
relative to the global minimum and defined below the profile. This
plot is from ref 21. The locations of the postulated “active” conforma-
tions of the 11 inhibitors in Table 4 having log(1/IC50) > 6 are plotted
as solid rectangles in this profile.

Table 6. Descriptions of the (RI) 4D-QSAR Analyses of the
Training Set of PGF2R Prostaglandin Analogs Given in Figure 7,
and Summaries of the Corresponding Best 3D-QSAR Models Found
in Each of the Two Studies.

(a)

methodology
parameter,
see Table 2 value

methodology
parameter,
see Table 2 value

(XL, YL, ZL) s (40 Å, 40 Å, 40 Å)
study 1: 2 Å; study 2: 1 Å

Es(I) 40 000 (1)

T 300 K Na 6
R study 1: 26 of Figure 7;

study 2: none
Nd 212

(b) Interaction Pharmacophore Elements

study 1 study 2

J0 IPE(a) A0 IPE(a) A0 IPE(n)
S0 IPE(a) A0 IPE(p+) A0 IPE(hbd)

A0 IPE(p-) A0 IPE(hba)

(c) Summary of the Top Ten (RI) 4D-QSAR Models
Using Alignment 3 of Table 7

Study 1
range inR2 and (xV-R2) in the top ten GFA models 0.726-0.855

(0.545-0.744)
no. of unique outliers in all top ten GFA models 5
no. of unique grid cells in all top ten GFA models 15
no. of significant PLS components 6
no. of significant GFA descriptors in each of
the top models

7-10

∆R2 and∆(xV-R2) for the top GFA model 0.015 (0.021)
no. of non-GCODs in all the top ten GFA models 1, [logP]ω

Study 2
range inR2 and (xV-R2) in the top ten GFA models 0.719-0.752

(0.609-0.635)
no. of unique outliers in all top ten GFA models 5
no. of unique grid cells in all top ten GFA models 12
no. of significant PLS components 5
no. of significant GFA descriptors in each of
the top models

6-8

∆R2 and∆(xV-R2) for the top GFA model 0.010 (0.018)
no. of non-GCODs in all the top ten GFA models 0

Figure 5. The GCODs of the best 3D-QSAR model, eq 4, in space.
The grid cells are represented as spheres with 1 Å diameters: (a)
isolated trimethoprim and the key grid cells of eq 4 and (b) trimethoprim
bound to a schematic representation ofE. coli DHFR reported in ref
29. The locations of the grid cells relative to key enzyme residues are
shown.
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predicted active conformations of the 11 analogs in Table 4
having log(1/IC50) > 6. The less active analogs in Table 4 adopt
a relatively random pattern of “active” conformations, as
compared to those in Figure 6. The active analog conformations
cluster in the vicinity of the trimethoprimE. coli bound state.
2. PGF2r Prostaglandins Tested for the Antinidatory

Effect. The training set consists of 42 analogs of prostaglandin,
PGF2R. The training set was assembled by investigators at
Procter and Gamble Pharmaceuticals from compounds and
corresponding biological activities reported in the literature.16,17

The structures of the analogs are shown in Figure 7.
The biological activity measures are the ED50 values reported

for the antinidatory effect in hamster16 and rat.17 Since the
biological activity for some compounds are reported for hamster,
while for others the reported activities are for rat, the activity
measures have been scaled relative to the ED50 values of PGF2R,
compound40, which was measured in both animals. For
convenience, the logarithmic values of the ratio of the ED50

value of PGF2R to the ED50 value of the test compound, log-
(REL. ED50), are used as the dependent variables and are given
in Figure 7.
The (RI) 4D-QSAR analysis is summarized in Table 6. In

study 1 described in Table 6 the grid cell size was set to 2 Å

because of the relatively large size of the compounds. A total
ensemble sampling of 40 000 conformations per analog led to
a constant CEP for each analog. Six different three-atom
alignments were considered which span and sample the com-
ponent “pieces” of the PGF2R analogs. The six alignments are
defined in Table 7 based upon the atoms specified in Figure 8.
ThexV-R2 values of the best 3D-QSAR model for Study 1, see
below, are also reported in Table 7. Alignment 3 stands out as
the preferred choice and also is the preferred choice used in
Study 2. The top ten 3D-QSAR models, summarized for the
two studies in part c of Table 6, and discussed below, are for
alignment 3 of Table 7.

Figure 7. The structures of the PGF2R analogs in the training set. The corresponding activities are given in brackets, [log(REL. ED50)].

Table 7. The Three Atoms Used in Each Alignment Rule, and the
Cross-Validated Correlation Coefficient of the Best 3D-QSAR
Model for Each Alignmenta

alignment no. atom 1 atom 2 atom 3 (xV-R2) optimum

1 a b c 0.532
2 d b e 0.407
3 f a c 0.744
4 h c a 0.553
5 a f g 0.535
6 c h i 0.581

a The atoms are defined in Figure 8.
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Study 1 was performed using the highly active compound
26 of Figure 7 as the reference in determiningJ0 andS0 for
only the IPE(a). The optimum 3D-QSAR model for all 42
analogs in the first study is

Equation 5 has two significant outliers [their residuals are
each larger in magnitude than 2.0 standard deviations of fit],
compounds37 and38 of Figure 7. If these two compounds
are removed in the construction of the 3D-QSAR model by
application of the GFA, the optimum model is

Figure 9 is a stick model of compound 26 of Figure 7 in its
postulated active conformation and the grid cells of eq 6 plotted
relative to compound26. Non-GCODs were included as part
of the initial basis set of descriptors in the GFA analysis. These
descriptors are listed and defined in Table 8. Only one of these
non-GCODs is found among the top ten 3D-QSAR models. [log
P]ω is found in the numbers 5 and 8 of the top ten models. No
other non-GCOD considered in Study 1 was found to be
significant.
Some GCODs involve grid cells associated with a “constant”

structure across the set of analogs similar to that found in eq 4
of the DHFR inhibitor study. For example, GC1(J0) and GC10-
(S0) involve two grid cells near constant structure sites over
the training set.
The active conformations of the PGF2R analogs were

determined using a∆E ) 2 kcal/cutoff and eq 6. Figure 10 is
a plot of the difference in predicted activity of the postulated
active conformation and the observed activity for each analog.
Most of the analogs have predicted active conformations with
corresponding predicted activities greater than the observed

activities used to construct eq 6. We think a positive residual
in activity for an analog is an indirect, approximate measure of
the loss inintrinsic activity of the analog due to its conforma-
tional entropy. The PGF2R analogs only occupy activity-
enhancing grid cells “part of the time” and also spend “part of
the time” in grid cells that either decrease activity or do not
contribute owing to their incipient conformational entropies. The
predicted active conformation of an analog can be viewed as a
rigid, T ) 0 K conformation that locks the analog into a single
geometry. Analogs, whose active conformations have predicted
activities greater than observed, occupy grid cells which enhance
activity to a greater extent than grid cells which diminish or
contribute nothing to activity. The opposite is true for the active
conformations of those few analogs which have the modest
negative residuals shown in Figure 10.

Figure 8. The atoms (a through i) used to define the six alignment
rules used in study 1 of the (RI) 4D-QSAR analysis of the PGF2R analog
training set. The compound shown is number 26 in Figure 7.

log(REL. ED50) ) 2.64GC1(J0) + 3.68GC2(J0) +
0.46GC3(J0) - 1.66GC4(J0) + 0.57GC5(J0) +
0.85GC6(J0) + 3.98GC7(J0) + 28.3GC8(S0) -

9.11GC9(S0) + 161.GC10(S0) - 4.68

N) 42 R2) 0.855 xV-R2 ) 0.744 F ) 18.3
SD) 0.36 R) 26 of Figure 7 (5)

log(REL. ED50) ) 2.72GC1(J0) + 3.61GC2(J0) +
0.50GC3(J0) - 1.69GC4(J0) + 0.58GC5(J0) +
0.82GC6(J0) + 3.92GC7(J0) + 29.5GC8(S0) -

10.7GC9(S0) + 164.GC10(S0) - 4.69

N) 40 R2 ) 0.899 xV-R2 ) 0.811 F ) 25.9
SD) 0.31 R) 26 of Figure 7 (6)

Figure 9. The GCODs of eq 6 plotted as spheres of 1 Å diameter
relative to the postulated active conformation of compound26of Figure
7: (a) GC1(J0), (b) GC2(J0), (c) GC3(J0), (d) GC4(J0), (e) GC5(J0),
(f) GC6(J0), (g) GC7(J0), (h) GC8(S0), (i) GC9(S0), and (j) GC10(S0).

Table 8. The Non-GCODs Used in the PGF2R Analog Studies

descriptor description symbol

logP of theR chaina [log P]R
logP of theω chaina [log P]ω
logP of the entire moleculea [log P]M
conformational entropy of theR chainb e(R)
conformational entropy of theω chainb e(ω)
dipole moment of the terminalω chain groupc d(ω)
aComputed from the MedChem software, ref 23.bComputed using

TAU theory, ref 28. These entropy values are NOT computed as part
of the conformational samplings used to construct the CEPs.cExtracted
from the molecular dynamics simulation.

Figure 10. A plot of the difference, or residual, in predicted activity,
using the postulated active conformation and eq 6 and the observed
activity as a function of compound number.
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Analogs with reasonably high observed activities,and large
positive residuals in Figure 10, are good templates for new
ligand design. That is, the compounds observed to be most
active may not be the best design templates. Somewhat less
active compounds, that are predicted to have high intrinsic
activities in their predicted active conformations, may be better
structure-design templates for characterizing specific ligand-
receptor interactions.
Table 9 is the linear cross-correlation matrix of the GCODs

of eq 6 and the activity measures. Two significant observations
can be made from an inspection of Table 9. First, no individual
GCOD has a high correlation with biological activity. Second,
three pairs of GCODs are highly correlated to one another, and
their R values are given in bold. A test was made to see if
both members of each highly correlated pair of GCODs are
needed in significant 3D-QSAR models. The results are given
in Table 10. If one randomly selected member of each of the
three pairs is deleted from the initial basis set, a poor model
(R2 ) 0.597,xV-R2 ) 0.400), even with five outliers removed,
results. Individual removal of GC5(J0) cannot be tolerated,
while removal of GC1(J0), or removal of GC9(S0), is marginally
acceptable for models with four outliers. Overall, it appears
that each member of a highly cross-correlated GCOD pair
individually provides unique information to the 3D-QSAR
model.
In the second (RI) 4D-QSAR analysis (Study 2) of the PGF2R

training set theJ0 andS0 measures were replaced withA0, and
all five types of (but no-user selected) IPEs were employed. In
addition, the polar atoms were subdivided into polar-positive
(p+) charge and polar-negative (p-) charge subsets. Thus, a
total of six IPEs were considered. A comparison of these two
studies permits an assessment of the use of a reference
compound in contrast to multiple IPEs and a smaller grid cell
size. The top ten (RI) 4D-QSAR models found in Study 2 are
summarized in part c of Table 6. The same methodology
parameters, except the grid cell size, was reduced from 2 Å to
1 Å, and the same alignment (alignment 3 of Table 7) used in
Study 1 was employed in Study 2. The best 3D-QSAR from
this (RI) 4D-QSAR analysis is

A comparison of eq 7 to eq 5 indicates that the use ofA0,
multiple IPEs, and a smaller grid size reduces the number of
GCODs from 10 to 6. TheR2 andxV-R2 values are somewhat
less for eq 7 than eq 5, but theF value is modestly higher. Five

GCODs of eq 7 correspond to spaces within the grid cells used
in eq 5. Only GC11(hbd) corresponds to a grid cell location
not seen in eq 5. The added flexibility in characterizing
descriptor space by using multiple IPEs is reflected in eq 7
where IPEs other than IPE(a) are found for four of the six
GCOD terms. Somewhat surprisingly, reducing the grid cell
size from 2 Å to 1 Å does not lead to a markedly better 3D-
QSAR model from a statistical standpoint or a proliferation in
the number of significant GCODs among the top ten models,
see Table 6 part c for Study 2.
3. 2-Substituted Dipyrididodiazepinone Inhibitors of

HIV-1 Reverse Transcriptase (RT). The training set of
inhibitors (I) are analogs to nevirapine (II) and are given in Table

11. This training set was constructed from literature com-
pounds19 and compounds provided by Boehringer Ingelheim
Pharmaceuticals.18 Inhibition activity, reported as-log(IC50),
against both wild type, WT-RT, and the cysteine 181 mutant
enzyme, Y181C-RT, are reported for each of the 40 compounds
in Table 11. In those cases where the chemical structure has
not been released for publication, no structure is given in Table
11, but the corresponding activities are listed. Some compounds
in the training set can exist as tautomers. For each of these
compounds both tautomers were individually considered in
energy minimization calculations using the AM1 method.22 The
tautomer which gave the lowest energy geometry was retained
for subsequent inclusion in the 4D-QSAR analysis.
The (RI) 4D-QSAR analyses of the RT inhibitors given in

Table 11 for both WT and Y181C activities are summarized in
Table 12. Twenty alignments, described in Table 13, were
considered in this 4D-QSAR analysis. TheR2 value for the
best WT-RT inhibition GFA model realized for each alignment
is also recorded in Table 13 along with the compound numbers
(from Table 11) of the outliers of each best alignment 3D-

Table 9. The Linear Correlation Matrix for the GCODs Used in Eq 6

GC1(J0) GC2(J0) GC3(J0) GC4(J0) GC5(J0) GC6(J0) GC7(J0) GC8(S0) GC9(S0) GC10(S0) BA

GC1(J0) 1.000
GC2(J0) -0.262 1.000
GC3(J0) 0.718 0.026 1.000
GC4(J0) -0.104 -0.191 -0.105 1.000
GC5(J0) -0.336 -0.148 -0.637 0.191 1.000
GC6(J0) -0.199 -0.338 -0.167 0.203 -0.024 1.000
GC7(J0) -0.177 0.013 -0.043 -0.259 -0.017 -0.144 1.000
GC8(S0) 0.104 0.034 0.212 0.270 0.035 -0.033 -0.108 1.000
GC9(S0) 0.222 0.147 0.360 -0.031 -0.193 -0.187 -0.078 0.565 1.000
GC10(S0) -0.147 -0.143 -0.242 0.459 0.316 0.194 -0.009 -0.034 -0.110 1.000
BA 0.275 0.245 0.346 -0.163 0.067 0.089 0.321 0.317 0.133 0.177 1.000

log(REL. ED50) ) 0.097GC2(a)- 0.008GC4(n)+
0.108GC6(p+) + 0.003GC8(a)+ 0.038GC10(p-) -

0.043GC11(hbd)- 1.171

N) 42 R2 ) 0.752 xV-R2 ) 0.635 F ) 19.8
SD) 0.44 (7)

Table 10. R2 andxV-R2 Values for 3D-QSAR Models Generated
by Excluding Highly Cross-Correlated GCODs from Eq 6

variables excluded

total no.
of variables
in model

no. of
outliers R2 xV-R2

none 10 2 0.855 0.743
GC1(J0), GC5(J0), GC9(S0) 7 5 0.597 0.400
GC1(J0) 9 4 0.801 0.644
GC5(J0) 9 4 0.713 0.542
GC9(S0) 9 4 0.833 0.710
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QSAR. Each best WT-RT inhibition 3D-QSAR model has at
least one outlier, and theR2 value is moderately sensitive to
alignment rule ranging from 0.57 to 0.76. There is no apparent
pattern among the outliers as a function of alignment although
compounds18, 25, and36 occur as outliers most often.
OnlyA0, using the six IPEs given in part b of Table 12, were

used as trial GCODs. The IPE(p+) and IPE(p-) indicates that
the polar atom types were divided into positive and negative
charge density IPEs. Five non-GCODs were considered in the
initial GFA trial basis set: molecular weight, HOMO, LUMO,
dipole moment, and logP. HOMO, LUMO, and dipole moment

were computed for the lowest-energy structure found using the
AM1 scheme.22 log P was determined using the MedChem
Software package.23

The best 3D-QSAR model for WT-RT inhibition is

Table 11. The 2-Substituted (5-Methy-11-ethy1)dipyridodiazepinone (II) Training Set and Corresponding WT and Y181C RT Inhibition
Measures,-log(IC50)

a Structures not yet released for publication.

-log(IC50) ) 6.87- 0.40GC1(a)- 0.15GC2(p-) +
0.09GC3(p-) - 0.13GC4(a)+ 0.19GC5(n)+ 0.05GC6(n)

N) 40 R2 ) 0.76 xV-R2 ) 0.66 F ) 17.2 SD) 0.26
(8)
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None of the non-GCODs considered in the trial GFA basis
set of descriptors are found to be significant among the five
best 3D-QSAR models as indicated in part c of Table 12 for
WT-RT inhibition. Part c of Table 12 also records that ten
distinct GCODs are distributed over the five best 3D-QSAR
models. The linear cross correlation analysis for the ten distinct
GCODs indicates that only GC1 and GC1O are highly correlated
(R) 0.81), but they appear in different 3D-QSAR models. In
order to determine if the top five 3D-QSAR models are
providing common, or distinct, structure-activity information,

the correlation coefficients of the residuals in the error (observed
activity- predicted activity) between pairs of models have been
computed and are given in Table 14a. Equivalent models are
expected to have identical distributions in residuals of the error.
Distinct models should have noncorrelated patterns in their
residuals of fit (error). This type of data analysis has been
suggested by Rogers24 as a diagnostic to determine the subset
of distinct models among a set of good models realized in GFA
analysis.
The residuals in error haveR> 0.75 (high cross-correlation)

for model pairs [2-3], [2-5], [3-5], and [4-5]. Hence, it
appears there are two relatively distinct models among the top
five, namely model 1 and any one of the other four. In other
words, themanifoldof distinct and significant WT-RT inhibition
3D-QSAR models consists of two models, models 1 and 2.
Model 2, which is the best of the four correlated (similar)
models, is

Figure 11 is a plot of the manifold of distinct WT inhibition
3D-QSARs, eqs 8 and 9. Part a of Figure 11 shows compound
8, an active inhibitor [-log (IC50) ) 7.55] relative to the
composite GCODs of eqs 8 and 9. Part b of Figure 11 is the
same plot as part a, but for the inactive inhibitor compound36
[-log (IC50) ) 6.08]. It is clear from Figure 11 that atoms/
groups of compound8 occupy a grid cell, GC6(n), that enhances
activity, while compound36 has atoms/groups occupying grid
cells GC1(a) and GC4(a) which are predicted to diminish
inhibition potency. The conformations of compounds8 and
36 are the predicted active conformations using step 10 of the
4D-QSAR methodology.
The number of significant PLS components, see part c of

Table 12 for WT-RT inhibition models, is three, while five to
six GCODs are found in each of the top five GFA 3D-QSAR
models. The GFA models seem to incorporate most of the
information in the training set since∆R2 and∆(xV-R2) are both
very small.
Table 11 also contains inhibition activity for Y181C-RT, a

major mutant. 4D-QSAR analysis, identical in form and
procedure to that done using the WT-RT training set, was carried
out, and the findings are summarized in part c of the Y181C-
RT inhibitor section of Table 12. The best 3D-QSAR model
is

Equation 10 is based on alignment 13 of Table 13. This is
significant to point out because the best Y181C-RT inhibition
3D-QSAR models are found for a different alignment from that
for WT-RT inhibition. In other words, the same set of inhibitors
are predicted to bind somewhat differently to the Y181C-RT
enzyme than to the WT-RT enzyme. An attempt was made, in
collaboration with colleagues at Boehringer Ingelheim, to map

(22) Stewart, J. J. P.MOPAC Manual, MOPAC 6.0; Frank J. Seiler
Research Laboratory, United States Air Force Academy: 1990.

(23) Medicinal Chemistry Software,Medchem Software Manual, Release
3.51; Pomona College: Claremont, CA, 1987.

(24) (a) Rogers, D., private communication, 1996. (b) Rogers, D.
Evolutionary Statistics: Using a Genetic Algorithm and Model Reduction
to Isolate Alternate Statistical Hypotheses of Experimental Data. In
Proceedings of the SeVenth International Conference on Genetic Algorithms;
East Lansing, MI; Morgan-Kaufmann, San Francisco, CA, 1997.

Table 12. Description of the (RI) 4D-QSAR Analyses of the WT-
and Y181C-RT Inhibitor Training Sets Given in Table 11 and
Summaries of the Corresponding Best 3D-QSAR Models Found in
Each Study

WT-RT Inhibitors

(a)

methodology
parameters,
see Table 2 value/choice

methodology
parameters,
see Table 2 value/choice

(XL, YL, ZL) s (25 Å, 25 Å, 25 Å) 1 Å Es(I) 20 000(1)
T 300 K Na 20
R none Nd 205

(b) Interaction Pharmacophose Elements, IPEs
A0 IPE(a) A0 IPE(hba)
A0 IPE(p+)a A0 IPE(hbd)
A0 IPE(p-)a A0 IPE(n)

(c) Summary of the Top Five (RT) 4D-QSAR Models
Using Alignment 4 of Table 13

Study 1
range inR2 and (xV-R2) in the top five GFA models 0.67-0.76

(0.57-0.66)
no. of unique outliers in all top five GFA models 3
no. of grid cells in all top five GFA models 10
no. of significant PLS components 3
no. of significant GFA descriptors in each of the
top models

4-6

∆R2 and∆(xV-R2) for the top GFA model 0.006 (0.009)
no. of non-GCODs in all the top five GFA models 0

Y181C-RT Inhibitors

(a)

methodology
parameters,
see Table 2 value/choice

methodology
parameters,
see Table 2 value/choice

(XL, YL, ZL) s (25 Å, 25 Å, 25 Å) 1 Å Es(I) 20 000(1)
T 300 K Na 20
R none Nd 205

(b) Interaction Pharmacophose Elements, IPEs
A0 IPE(a) A0 IPE(hba)
A0 IPE(p+)a A0 IPE(hbd)
A0 IPE(p-)a A0 IPE(n)

(c) Summary of the Top Five (RT) 4D-QSAR Models
Using Alignment 13 of Table 13

range inR2 and (xV-R2) in the top five GFA models 0.62-0.71
(0.51-0.61)

no. of unique outliers in all top five GFA models 5
no. of grid cells in all top five GFA models 11
no. of significant PLS components 3
no. of significant GFA descriptors in each of
the top models

4-5

∆R2 and∆(xV-R2) for the top GFA model 0.006 (0.009)
no. of non-GCODs in all the top five GFA models 0

a The polar atom types were divided into those with positive and
those with negative charge densities.

-log(IC50) ) 6.84- 0.43GC1(a)- 0.21GC2(p-) +
0.08GC3(p-) + 0.15GC7(p-) + 0.12GC8(hbd)

N) 40 R2 ) 0.70 xV-R2 ) 0.60 F ) 15.8 SD) 0.28
(9)

-log (IC50) ) 6.81- 0.07GC1(n)+ 0.53GC2(n)-
0.08GC3(a)+ 0.10GC4(a)- 0.35GC5(n)

N) 40 R2 ) 0.71 xV-R2 ) 0.61 F ) 16.7 SD) 0.27
(10)

Construction of 3D-QSAR Models J. Am. Chem. Soc., Vol. 119, No. 43, 199710521



the locations of the grid cells of eqs 8 and 10 relative to the
enzyme-bound inhibitor (compound8) geometries of WT- and
Y181C-RT complexes. The resolution of the crystal structures
is not sufficient at present to establish this mapping.
A residuals of error cross-correlation analysis of pairs of the

five best Y181C-RT 3D-QSAR models was performed to
identify the manifold of 3D-QSAR models. The cross-correla-
tion matrix is given in Table 14b. Models [2-3] and [4-5]
have high cross correlation coefficients. Therefore, the manifold
of Y181C-RT 3D-QSAR models consists of three [1, 2, 4] of
the top five models. The equations for models 2 and 4 are

The locations of the unique grid cells of eqs 10-12 relative
to (a) compound8 [-log (IC50) ) 7.55, active] and (b)
compound36 [-log (IC50) ) 5.60, inactive] are shown in Figure
12 and constitute the manifold set of GCODs. Figures 11 and
12 are identical in format except for the locations and orienta-
tions of the respective structures due to the two different
alignments. There are additions, deletions and/or shifts in the

grid cells between Figures 11 and 12. For example, grid cells
GC1(a) and GC4(a) of Figure 11 merge and migrate “to
become” GC3(a) in Figure 12. Grid cell GC5(n) appears in
Figure 12 and has no equivalent in Figure 11. All of the GCODs
near the 2-aryl substitutents for Y181C mutant activity have
negative regression coefficients in the QSAR equations. Thus,
increasing occupancy of any of these grid cells decreases
activity, see Figure 12. One interpretation of this finding is
that there is a “constant” binding interaction (a positive
contribution to inhibition potency) in this region which is
diminished by certain 2-aryl substitutents owing to their
preferred average spatial locations.
The number of significant PLS components and significant

GCODs in the best GFA 3D-QSARs as well as∆R2 and∆(xV-
R2) values for the Y181C-RT models are about the same as
found for the WT-RT inhibition models. This information is
in the Y181C-RT section of part c of Table 12.

Table 13. Atom Numbering Used To Define the Three-Atom Alignments, Number of Occupied Cells for Each Alignment and Corresponding
Number of GCODs for Each Alignment

atomsalignment cells GCODsa R2 b outliers

1 2 1 11a 664 3984 0.62 (28, 36)
2 13 6a 5 828 4968 0.71 (4, 18)
3 6a 10a 5 707 4242 0.57 (23)
4 9 10 11a 881 5286 0.76 (40)
5 1 11a 4a 622 3732 0.62 (16, 18)
6 5 10a 4a 641 3846 0.73 (12, 13, 18, 36)
7 8 9 10 974 5844 0.64 (25)
8 6 9 10a 694 4164 0.67 (13, 18)
9 5 6 6a 1155 6930 0.71 (25, 36)
10 5 6a 6 654 3924 0.61 (17, 18, 20)
11 2 6 6a 607 3642 0.58 (18, 23, 25, 36)
12 10a 11 9 716 4296 0.68 (20)
13 3 2 1 676 4056 0.68 (25, 36)
14 3 8 4 694 4164 0.65 (12)
15 8 3 9 653 3918 0.68 (9, 14, 25)
16 11a 5 8 686 4116 0.67 (15)
17 11a 10a 4a 832 4992 0.65 (13, 23, 40)
18 11 10 9 1112 6672 0.73 (13, 30)
19 11a 10a 8 835 5010 0.71 (27, 28)
20 10a 9 6 929 5574 0.75 (36, 40)

aNumber of GCODs is the number of cells times six (the six types of occupancy).b TheR2 of the best WT 3D-QSAR model for each alignment
is also given.

-log (IC50) ) 6.35- 0.07GC1(n)+ 0.23GC4(a)+
0.09GC6(n)+ 0.45 GC7(n)- 0.05GC8(n)

N) 40 R2 ) 0.67 xV-R2 ) 0.55 F ) 15.9 SD) 0.29
(11)

[Model 2]

-log (IC50) ) 6.80- 0.04GC1(n)- 0.06GC3(a)+
0.29GC9(p-) - 0.45GC1O(n)- 0.46GC11(n)

N) 40 R2 ) 0.68 xV-R2 ) 0.53 F ) 14.4 SD) 0.29
(12)

[Model 4]

Table 14. The Cross-Correlation Matrices of the Residuals in
Error of the Five Best 3D-QSAR Modelsa

model 1 2 3 4 5

(a) WT-RT
1 1.00
2 0.68 1.00
3 0.70 0.88 1.00
4 0.50 0.69 0.71 1.00
5 0.68 0.95 0.93 0.77 1.00

(b) Y181C-RT
1 1.00
2 0.45 1.00
3 0.48 0.93 1.00
4 0.52 0.42 0.35 1.00
5 0.49 0.42 0.37 0.91 1.00

aModel 1 has the highestR2 andxV-R2 measures; model 5 the lowest
of the top five models.
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Discussion

Two unexpected findings from the (RI) 4D-QSAR application
studies are (a) the enormous reduction in the number of
independent variables (GCODs) realized in the generation of
an optimized 3D-QSAR model and (b) that the optimum 3D-
QSAR models can contain GCODs associated with “constant”
part(s) in the structures of the analogs in a training set.
Data reduction by serial PLS and GFA analyses, Steps 6 and

7 in Table 1, reduces the number of GCODs used in any
correlation equation from the 20 000-50 000 range to 10, or
less, for the training sets studied. Moreover, the total number
of unique GCODs found among the top ten 3D-QSAR models
of any particular study is less than 20. The number of significant
GCODs in the best 3D-QSAR models is found to be the same
as, or slightly larger than, the number of significant components
identified in the PLS phase of the data reduction. In other
words, the GCODs in the optimized 3D-QSAR models capture
about the same amount of information as is inherent to the
significant PLS principal components. The small values of∆R2
and∆(xV-R2) in part c of Tables 5, 6, and 12 are indicative of
this small loss in correlation information.

The number of significant 3D-QSAR GCODs increases as
the flexibility and/or size of the molecules (alignment variability)
in the training set increases. For example, the DHFR-ben-
zylpyrimidine inhibitors have two principal torsion angle degrees
of freedom plus some substituent torsion angles. The 3D-
QSARs for this training set contains four to five GCOD terms.
The PGF2R analogs have eight to 12 torsion angle degrees of
freedom, and the corresponding 3D-QSARs have six to ten
GCOD terms.
The number of GCOD found in the best 3D-QSAR models

in the three applications reported here each lead to a slightly
oversubscribed problem given the respective number of analogs
in each training set. Cross-validation readily deals with testing
the robustness of the models and possible overfitting. This
situation of marginal overfitting can be expected to persist in
other 4D-QSAR applications. The number of essential GCODs
is a characteristic of the chemistry and biology of the training
set and only influenced by the number of observations (com-
pounds) to the extent of the chemistry and biology sampled by
the compounds.
All three of the (RI) 4D-QSAR studies reported in this paper

have optimized 3D-QSAR models which include GCODs
associated with the “constant” parts of the structures of the
analogs. A grid cell near the 2-amino group of the pyrimidine
ring, see eq 4 and Figure 4, is significant for the DHFR inhibitor
3D-QSAR; a grid cell near the 2-OH of the ring in the PGF2R
analogs, see Figure 9, is essential to a good 3D-QSAR, and

Figure 11. The distinct set of GCODs of the manifold 3D-QSAR
model for WT-RT inhibition [eqs 8 and 9] plotted as spheres of 1 Å
diameter relative to (a) compound8 and (b) compound36 in their
respective postulated active conformations. The I* in each figure corre-
sponds to GCI(x) in eqs 8 and 9. The open spheres correspond to grid
cells where occupancy can enhance activity, while the hatched spheres
correspond to grid cells where occupancy decreases inhibition potency.

Figure 12. The same as Figure 11 but for the manifold 3D-QSAR
model for Y181C-RT inhibition.
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two grid cells associated with the dipyridodiazepinone tricycle
and one with the 11-ethyl are found, see Figure 11, in the RT-
WT inhibitor 3D-QSARs. This is the first time, as far we know,
that a QSAR predicts a feature associated with the fixed structure
of an analog series as being crucial to establishing the correlation
equation. In essence, 4D-QSAR analysis can test if the
independent binding site model25 holds for a particular training
set. In each of the three applications studies reported here, the
independent binding site model does not rigorously hold. The
variability in the GCODs associated with the constant part of
an analog series is due to freedom in both conformation and
alignment. Depending on the choice in the alignment rule, the
variations in conformation of the constant chemical structure
part of an analog can be shunted, or attenuated, relative to other
analogs. In other words, 4D-QSAR analysis identifies slight
differences among the binding modes of analogs as correspond-
ing differences in both the location and/or occupancy values of
the GCODs associated with constant chemical structures across
the analogs.
The ensemble averaging of conformational behavior in

constructing a 3D-QSAR using 4D-QSAR analysis permits an
estimation of the effect of conformational entropy on activity.
Currently, the entropy-activity interrelationship depends upon
identifying a single active conformation of each analog from
its CEP. This single active conformation is selected on the basis
of the lowest-energy conformer state which maximizes the
predicted activity using the best 3D-QSAR model. The role of
conformational entropy on activity is then associated with the
difference in predicted activity using the single, “active”
conformation and the observed activity. The predicted activity
of the single active conformer state is usually greater than the
observed activity (see Figure 10 for the analysis of PGF2R
analogs). Thus, the predicted activity of the active conformation
of an analog can be viewed as theintrinsic actiVity of the analog
in the absence of its entropy or itsenthalpic actiVity. In turn,
it can be argued that analogs in the training set with the highest
intrinsic activities may be better design templates to realize
favorable ligand-receptor interactions than simply adopting
analogs with the highest observed activities.
The predicted “active” conformation of each compound in a

training set, and the corresponding preferred alignment realized
from a 4D-QSAR analysis can be used to define the input for
other 3D-QSAR methods. Thus, (RI) 4D-QSAR analysis could
be used as a “preprocessor” to a CoMFA and provides the
requisite input molecular geometries and alignment. Perhaps
more exciting, the CoMFA field descriptors can be readily
combined with the (RI) 4D-QSAR GCODs to generate an
expanded pool of trial descriptors to use in constructing a 3D-
QSAR model.
(RI) 4D-QSAR analysis, through the use of IPEs, allows each

of the compounds in a training set to be partitioned into sets of
structure types and/or classes with respect to possible interac-
tions with a common receptor. In a 4D-QSAR analysis, sets
of GCODs, defined by the IPEs, are simultaneously mapped
into a common grid cell space. Thus, the combined PLS-GFA

mapping of the GCODs to activity space includes not only
attributes of the whole molecule over space but also spatial
attributes of all the component IPEs of a compound. Hence, if
some parts of a ligand are present only to correctly position
and orient other ligand groups for receptor binding, 4D-QSAR
analysis has the capacity to identify this feature.
Each application of (RI) 4D-QSAR analysis reported here

has resulted in 3D-QSAR models with good statistics of
correlation fit. However, it is still important to know how good
these models are to QSARs constructed in other ways. The
DHFR 3D-QSAR model reported here (R2 ) 0.957,xV-R2 )
0.885, four-terms) is clearly superior to a model constructed
for the same training set (R2 ) 0.913,xV-R2 ) 0.816, five-
terms) using tensor-based 3D-QSAR.20 For the PGF2R training
set, collaborators at Procter and Gamble Pharmaceuticals26 have
been able to generate a QSAR model of comparable statistical
fit to that reported in eq 5 using parametric QSAR design.
Cardozo27 used a variation of molecular shape analysis1,3 to
construct a 3D-QSAR nearly comparable in statistical signifi-
cance to the best model for WT-RT inhibition, eq 9, developed
for the training set reported in Table 11.
Overall, 4D-QSAR not only would appear to yield 3D-QSAR

models at least as good as can be generated using other methods
but also provide added value information not realized by other
methods.
Interpretation of multiple “good” models from a GA analysis

remains problematic irrespective of whether or not the applica-
tion is to a QSAR problem. Rogers’24 approach of computing
and comparing the linear cross-correlation coefficients of the
residuals of the error between pairs of the good GA models
provides a basis for organizing and exploiting information from
multiple models. Two models that have about the same residual
errors over the training set (R≈ 1) very likely express the same
information. Conversely, two models with different residuals
of the error over the training set (R< 0.5) may provide different
information. Thus, the composite set of good models, whose
residuals of the error are poorly correlated, are amanifold model
of the structure-activity profile inherent to the training set.
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